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Abstract

The archaeological Bronze Age record in Europe reveals unprecedented changes in subsis-

tence strategies due to innovative farming techniques and new crop cultivation. Increasing

cultural exchanges affected the economic system. The inhabitants of Switzerland played a

pivotal role in this European context through relationships with the Mediterranean, the High

and Middle Danube regions and the Alps thanks to the area’s central position. This research

aims to reconstruct, for the first time in Switzerland, human socio-economic systems

through the study of human diet, herding and farming practices and their changes through-

out the Bronze Age (2200–800 BCE) by means of biochemical markers. The study includes

41 human, 22 terrestrial and aquatic animal specimens and 30 charred seeds and chaff

samples from sites in western Switzerland. Stable isotope analyses were performed on

cereal and legume seeds (δ13C, δ15N), animal bone collagen (δ13Ccoll, δ15N, δ34S), human

bone and tooth dentine collagen (δ13Ccoll, δ15N,) and human tooth enamel (δ13Cenamel). The

isotopic data suggest a) an intensification of soil fertilization and no hydric stress throughout

the Bronze Age, b) a human diet mainly composed of terrestrial resources despite the prox-

imity of Lake Geneva and the Rhone river, c) a diet based on C3 plants during the Early and

Middle Bronze Age as opposed to the significant consumption of 13C-enriched resources

(probably millet) by individuals from the Final Bronze Age, d) no important changes in dietary

patterns throughout an individual’s lifespan but a more varied diet in childhood compared to

adulthood, e) no differences in diet according to biological criteria (age, sex) or funerary

behavior (burial architecture, grave goods).
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Introduction

The Bronze Age (2200–800 BCE) is a period of important social and economic growth. Large

cultural and ethnic traditions, with distinctive features, arose in Europe for the first time [1],

developing in a larger, connected framework. This study explores the biochemical aspects of

this phase of economic and social changes, which influenced every aspect of human life,

including lifestyle, subsistence strategies and food habits. The reconstruction of farming prac-

tices, land use and, consequently, dietary behaviors, which directly affect prehistoric commu-

nities’ way of life, contribute to the understanding of these complex socio-economic dynamics.

Archaeological evidence suggests that Bronze Age communities lived on agriculture, animal

husbandry and wild plant harvesting [2, 3]. From the Bronze Age onwards, the south of central

Europe was characterized by the expansion of wide open spaces, reducing the areas covered by

permanent forests [4]. These open areas were cultivated or used as pasture for livestock. The

spread of the cultivated land led to the exploitation of less fertile soil, especially during the

Final Bronze Age, a time of demographic growth [5]. To increase agricultural production, sig-

nificant innovations were introduced and a number of new crops were cultivated, adding to

the diversity of food resources [2], especially in areas characterized by poor soils or during

periods of drought [6]. New management systems like crop rotation and the use of manure as

well as new farming strategies which involved controlling the hydric systems developed, lead-

ing to a more intense and rationalized agricultural activity [7, 8].

The Bronze Age was also characterized by the increased mobility of goods and people, in

long-distance exchange networks. Indeed, one of the main driving forces at the origin of large

cultural complexes was the exchange of metal and other raw materials across Europe from

only a few key areas and, consequently, long-distance trade transport [9, 10]. The distribution

of bronze metallurgy, which requires both copper and tin, uncommon and unevenly distrib-

uted ore deposits, led to heightened relationships at both the local and regional levels and to

the multiplication of exchanges at the European level [11–13]. Indeed, a new globalized world

of interconnectivity took shape and the movement of people was at the base of this phenome-

non, as has been confirmed by aDNA research [14–16].

In this context of greater European networking and socio-economic development, the

archaeological record shows that Switzerland played a major role because of its strategic posi-

tion for exchanges with both central and southern Europe [12, 17, 18]. Swiss archaeological

sites from this period showcase a mixture of local traditions and influences from surrounding

societies [18, 19]. Consequently, Switzerland is an exceptional observatory for the reconstruc-

tion of dietary patterns, and subsistence strategies during the Bronze Age. The region is char-

acterized by high environmental variability: the rapidly changing biotopes have different

natural resources, making this territory even more interesting for the study of subsistence

strategies.

The aim of this research was to investigate how dietary habits and farming practices

changed during the Bronze Age through a multi-isotopic approach on human, animal and

botanical remains. Isotopic analyses accomplished on the entire trophic chain can clarify a)

how agricultural practices evolved over time, b) whether manuring occurred or not, c) crops

hydric condition and d) changes in dietary patterns. Some large European necropoles of the

Bronze Age, such as Arano di Cellore, Olmo di Nogara (Italy) [20–22] and Singen-am-

Hohentwiel (Germany) [23], have already been the subject of dietary investigations providing

key economic details about agricultural practices. The high dietary variability detected in bio-

chemical studies of the Bronze Age of southern Europe [20, 21, 24, 25] has led to further

research on the spread of new plant foodstuffs, like C4 plants, in Europe from the Middle

Bronze Age. Switzerland, particularly its western area, offers excellent archaeologically and
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chronologically well-documented datasets to explore these types of questions through a multi-

isotopic and multi-proxy approach.

The Bronze Age of western Switzerland

Placed in the north-western portion of the Alpine mountain chain, Switzerland has a strategic

geographic position. It is crossed by a large plateau oriented northeast-southwest, with a rich

hydrographic network and several lakes, connecting western and central Europe. In addition,

several Alpine passages provide access to southern Europe through northern Italy (Fig 1). At

the crossroads of various exchange networks and cultural influences, the Bronze Age of Swit-

zerland (Early Bronze Age: 2200–1500 cal. BCE, Middle Bronze Age: 1500–1300 cal. BCE,

Recent and Final Bronze Age: 1300–800 cal. BCE [19]) is characterized by a mosaic of cultural

groups, both in time and space (e.g., culture of the Valais [18, 26]). However, current knowl-

edge of this cultural variability is limited by the uneven quality of the archaeological record

from the different chronological phases [27].

Despite these limitations, several lines of archaeological evidence point towards an increase

in socio-political, economic and technological complexity throughout the Swiss Bronze Age.

Funerary practices shifted from cemeteries of individual burials in the Early Bronze Age [28–

30] to grouped graves under tumuli and rare burials with multiple individuals in the Middle

Bronze Age [31–33] to mixed necropoles with individual cremations and inhumations at the

end of the Bronze Age [34, 35]. Grave goods are present in some burials in all Bronze Age peri-

ods: they are limited to bronze artefacts in the Early Bronze Age, while from the Middle Bronze

Age pottery occurs sometimes, becoming more frequent during the late Bronze Age. Metal

artefacts continue to be present, especially prestige objects like in Middle Bronze Age burials

[19, 36] and in the later Bronze Age ones [35]. The increasingly specialized practice of

Fig 1. Location of the archaeological sites in western Switzerland included in this study (the map was made in

QGIS 3.16 using Natural Earth, GMTED2010 and DIVA-GIS metadata publically available).

https://doi.org/10.1371/journal.pone.0245726.g001
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metallurgy required exchanges with the south of the Alps, the Danube Basin and the eastern

Mediterranean [37–39].

This trajectory of increased complexity and social stratification is difficult to study archaeo-

logically for the later Bronze Age periods because the practice of cremation was introduced in

the Middle Bronze Age and became almost exclusive during the Recent and Final Bronze Age

in Switzerland, as in most of Europe (e.g., [40]). Exceptions to this pattern are the Final Bronze

Age cemeteries from the Lake Geneva Basin and the upper Rhone valley [35]. Indeed, in the

Final Bronze Age, both cremations and inhumations were present in south-western Switzer-

land but cremations seemed more complex in terms of funerary architecture and grave goods,

suggesting that they may have been reserved for the elite [35]. This contrasts with earlier peri-

ods in the same areas where the small size of the necropoles suggests the existence of small

communities with limited social differences.

In parallel with these social and demographic changes, during the Bronze Age, subsistence

patterns intensified, involving several aspects of the production economy. Throughout the

Bronze Age, the economy was based on agriculture, cattle breeding and woodland exploita-

tion, in substantial continuity with the agro-pastoral economies practiced since the Neolithic

[41, 42]. However, in addition to wheat and barley, new varieties of pulses and cereals, such as

lentils, beans, spelt and millet were introduced [42–45]. Not only the number of plants

increased, but also the production techniques improved and land use changed [42, 46]. There

is evidence for the use of crop rotation, fertilization and water supply systems to increase agri-

cultural production [47]. Animal husbandry still played a crucial role in the economy, with an

increased dominance of sheep and goats at the end of the Bronze Age, although the main meat

supply was provided by cattle [48–50]. Sediment records and strontium isotope analysis per-

formed on animal remains support seasonal movement of livestock to higher elevations [51].

Evidence for a well-organized use of the territory is demonstrated by the exploitation of wet-

lands around the lakes: wet meadows beyond the reedbeds, in all likelihood seasonally flooded,

provided bedding for livestock.

All these increasingly complex agricultural and pastoral activities are apparent in the

archaeological record [27, 41]. However, there remain important gaps in current knowledge,

such as the timing and geographic patterning of the introduction of these new agricultural and

pastoral techniques. In addition, research has focused on archaeobotanical and archaeozoolo-

gical remains without any direct evaluation of the resources consumed through biochemical

analyses. As a result, it is not known whether the new plants were destined for animal or

human consumption, whether manuring was routinely applied or not and whether it was used

on all crops or only on a select few. Similarly, almost no information is available about hydric

conditions and if some crops were preferentially watered compared to others. Multi-proxy iso-

topic studies on well-dated material have the potential to significantly improve our under-

standing of Bronze Age economic intensification, changes to human dietary patterns and

mobility events.

The cemeteries

Collombey-Muraz, La Barmaz is located in the Valaisan Chablais, around 15 kms from the ori-

ental limit of Lake Geneva (Fig 1). The site has Neolithic and Bronze Age occupations and is

composed of the cemeteries of La Barmaz I and II and the settlement of the Refuge hill [18,

30]. The Early Bronze Age necropolis of La Barmaz I (2200–1550 cal. BCE) includes 15 indi-

vidual burials. Anthropological analyses identified 13 adults of both sexes and two young juve-

niles (< 5 years old) [30] (S1 Fig). The present study includes only the 13 adults. Seven graves

contained exclusively bronze objects as grave goods: awls, spiraled rings, pearls, a double-spiral
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pendant, a dagger and an axe [18]. The funerary architecture, the ritual and the grave goods do

not suggest any social differences between the individuals [30].

The necropolis of Vufflens-la-Ville, En Sency is located in the Venoge valley, about 9 kms

northwest of Lausanne, on a small hill used as a gravel pit (Fig 1) [31, 52]. The necropolis was

in use from the Middle Bronze Age to the Early Iron Age. A burial stone mound (tumulus)

was erected at the beginning of the Middle Bronze Age, covering the central double burial of

an elderly woman and a young man. Two other individual burials, one of an older male and

the other of a juvenile, overlap with the edge of the burial mound and date to the Middle

Bronze Age (S2 Fig). Contemporary with the latter two individual burials, there is a collective

grave of four women and two adolescents in a pit on the south-western part of the tumulus (S2

Fig). The collective burial contained more than 80 amber beads, different pendants and a jug.

Two male burials without grave goods located on the western part of the site are contemporary

with the previous burials and two other cremated burials belong to later periods. In total, 12

Middle Bronze Age inhumations were found [31]. The individual, double, and collective

graves contain individuals of different ages and sex. Anthropological studies identified seven

adults and five juveniles. The grave goods suggest that this small cemetery was likely reserved

for a local elite [31].

The site of Tolochenaz, Le Boiron-La Caroline is situated to the north of Lake Geneva, in the

commune of Tolochenaz (Fig 1). The cemetery is split between two lake terraces, ten and 30

meters high each, Le Boiron and La Caroline, both dated to the Final Bronze Age (1050–800 cal.

BCE). Tolochenaz was a bi-ritual cemetery, where both inhumation and cremation were per-

formed. Le Boiron was discovered at the beginning of the 19th century and even if more than 70

graves were initially discovered, more recently only 17 burials and 15 cremations have been

recorded [34]. In 2009, the exploitation of a gravel pit on the 30-meter high terrace led to the

discovery of 20 graves in the La Caroline area [35]: 19 inhumations, mainly in monolithic cof-

fins, and one cremation. One individual (LaC4) differs from the rest for his unique funerary

structure. He was buried prone in a straight ditch surrounded by a circular ditch, while all the

other inhumations were supine with extended lower limbs in rectangular pits. Several graves

delivered funeral artefacts such as an awl, pins, ankle rings, bracelets, rings, amber and glass

beads, razors and ceramic vessels (S3 Fig). For this study, ten individuals from La Caroline and

six from Le Boiron were included, for a total of 12 adults of both sexes and four juveniles.

Stable isotope analyses to reconstruct human dietary habits

Carbon isotopic ratios allow us to distinguish the environment where humans acquired their

resources (e.g., terrestrial vs. aquatic) and the type of plants consumed. The C3 type plants are

typical of a temperate environment (barley, wheat) and they prevail in Switzerland and in all of

Europe, whilst C4 type plants usually reflect an open and warm environment and have higher

values (millet, sorghum) [53–55]. The C4 plants most cultivated by prehistoric communities

were millet varieties, mainly Panicum miliaceum and Setaria italica [20, 21]. Thus, the possibil-

ity of detecting C4 plant intake is particularly relevant to the present study as it may help iden-

tify the first C4 consumers in central Europe. The isotopic ratios of nitrogen are used to

determine the trophic level occupied within the food chain. Plants, being at the base of the

food chain, present lower δ15N values and as a consequence the δ15N values of predators are

higher than that of their prey [56, 57]. Finally, isotopic ratios of sulfur help identify the origin

of dietary resources (terrestrial, aquatic and marine) and detect the presence of non-local indi-

viduals [24, 58–60].

From one consecutive link of the chain to the next, a fractionation in favor of the heavy iso-

tope occurs. The concentration in heavy isotope increases (13C, 15N, 34S) and the isotope ratios
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rise at a rate estimated from 0 to 1‰ for carbon, from 3 to 5‰ for nitrogen, and lower than

1‰ for sulfur [56, 57, 61–63].

By analyzing remains from different sources, the isotopic values for each source are defined.

Archaeobotanical studies increasingly refer to experimental studies of traditional agricul-

tural systems [64]. Even though environmental factors [54, 65–67] as well as geographical con-

ditions [68] influence plants’ isotopic values, experimental investigations contribute to

quantify the impact of anthropic activities on isotopic values, such as the use of manure on

agricultural production [69, 70] and the hydric growing conditions [71–73].

Through the isotopic analyses of animal remains, the local isotopic variability of a diet can

be determined. When considering wild and domestic species, environmental factors and hus-

bandry practices can be taken into account as these can strongly influence the isotopic values

of domestic animals [74]. Moreover, based on herbivore data, it is possible to evaluate the iso-

topic value of the fodder they consumed. As such, the estimated isotopic ratios from fodder

provide a sample of the local vegetation, to which the values for cultivated plants can be com-

pared [75]. Consequently, agricultural practices, such as the use of manure or irrigation sys-

tems for cultivated plants, can be evaluated.

The analyses of the human remains were conducted at both the individual and population

level. By taking into account bone and teeth, the changes in diet over an individual’s lifespan

can be traced because bone and teeth have different growth patterns and turnovers [76, 77].

They are both constituted of a mineral, bioapatite, and an organic component, collagen. On

the one hand, bone collagen records the protein components of the diet, and its chemical com-

position reflects the food consumed over the last ca. 15 years of an adult’s life [78]. Teeth, on

the other hand, record the biogeochemical information of childhood, which can vary between

teeth because of their staged development. Finally, dentine collagen provides information on

the protein intake at the beginning of an individual’s life. In addition to the study of protein

intake, it is also possible to study the global energy provided through food (carbohydrates, lip-

ids and proteins not used for protein tissue synthesis) by analyzing tooth enamel carbonates

[79–81]. The δ13C value from apatite is dependent on the energy substrate because it is

obtained from blood plasma CO2 which mainly comes from metabolizing carbohydrates. Con-

sequently, the δ13C from apatite provides information on food sources consumed that are low

on protein content (e.g. cereals), which are difficult to identify when different dietary resources

overlap [79]. Based on experimental studies [82–84], the spacing between diet and bone apatite

has been estimated to 10.7‰ ± 1.4‰ on average (mean value) and between diet and enamel

apatite to ca. 13.4‰ ± 1.0‰ on average for a C3 and a C3-C4 diet [85]. Hence, through the car-

bon apatite–collagen spacing (Δ13Cap–coll) it is possible to distinguish the contribution of low

(wide spacing) and high (small spacing) trophic level resources [86–88].

Materials

Archaeological wild and domestic terrestrial and aquatic animals, as well as archaeobotanical

specimens were sampled from the same areas where the humans lived and shown in Fig 1.

There are 41 humans in total: 13 from La Barmaz, 12 from Vufflens and 16 from Toloche-

naz. Sex and age-at-death were analyzed previously (Table 1) [30, 31, 35]. Sex was determined

using standards outlined for the cranium and the coxal bones [89–91]. Age-at-death was

assessed using criteria proposed by [92, 93] for adults and by [77, 94–96] for juveniles. To limit

the uncertainties linked with using different methods, individuals were grouped into four age

categories (Table 1). Collagen was extracted from cortical bone and dentine from the crown of

the second molar, except for five individuals for whom samples were taken from the crown of

a canine, a premolar, a first molar and two incisors.
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The terrestrial animals date to the Early (La Barmaz), Middle (Rances, Champ Vully) and

Final Bronze Age (Chens-sur-Léman, Tougues). They include domestic and wild animals

(Ovis aries, Capra hircus, Bos Taurus, Sus domesticus, Cervus elaphus) for a total of 30 individu-

als. Four samples of pike (Esox lucius) were sampled from Chindrieux (Lake of Bourget,

Savoie), dating to the Final Bronze Age (Table A in S1 Text).

In addition, 30 seeds and chaff from cultivated plants from Chens-sur-Léman (Pré d’Ancy

and Vereı̂tre) were analyzed (Table A in S1 Text). They are dated to the Early, Middle and

Table 1. Human remains analyzed with their relevant anthropological and archaeological information.

Sites ID Burial Grave goods Skeletal element Tooth Sex Age Chronological periodb Date cal BCE (2σ) Date BP

Collombey-Muraz, La Barmaz BA3 N3 P ulna R M2 R F A EBA (BzA2)

BA5 N5 A ulna L M2 R M A EBA

BA6a/b N6a/N6b nd ulna L M2 R F A EBA

BA6 N6 P ulna L M2 R F A EBA (BzA2b,c)

BA22 N22 P ulna L M2 R M A EBA (BzA2)

BA23 N23 A tibia R M2 R M A EBA

BA25 N25 A ulna L M2 R M A EBA

BA26 N26 A ulna L M2 R M A EBA

BA28 N28 A humerus R M2 R F A EBA

BA42 N42 P ulna L M2 R M YA EBA (BzA2b)

BA50 T50 A ulna L M2 R F A EBA 1618–1224 cal BCE CRG 1339: 3172±82 BP

BA53 N53 A tibia R - M A EBA

ZHB ZHB P ulna L M2 R M A EBA (BzA2a)

Vufflens-la-Ville, En Sency VF1 VF 94/st 1 ind 1 P ulna R M2 R F A MBA (recent BzB)

VF2 VF 94/st 1 ind 2 P fibula M2 R M YA MBA (recent BzB) 1690–1430 cal BCE ETH-15757: 3285±65 BP

VF3 VF 95/st 4b ind 1 P humerus R M2 L F A MBA (BzC)

VF4 VF 95/st 4b ind 2 P? humerus L M2 R I C MBA (BzC) 1690–1370 cal BCE ETH-17761: 3235±80 BP

VF5 VF 95/st 4b ind 3 P? ulna R M2 L F YA MBA (BzC)

VF6 VF 95/st 4b ind 4 nd ulna L C sup R I C MBA (BzC)

VF7 VF 95/st 4b ind 5 P ulna R M2 R F a MBA (BzC)

VF8 VF 95/st 4b ind 6 P ulna L M2 L F A MBA (BzC) 1520–1250 cal BCE ETH-15758: 3120 ± 60 BP

VF9 VF 95/st 9 P radius L M2 L M A MBA (BzB/C) 1530–1190 cal BCE ETH-17758: 3130 ± 75 BP

VF10 VF 95/st 10 P radius M2 L I C MBA (BzB/C) 1520–1260 cal BCE ETH-15759: 3125 ± 55 BP

VF11 VF 95/st 11 A radius L M2 R M a MBA 1880–1500 cal BCE ETH-17759: 3370 ± 70 BP

VF12 VF 95/st 14 A ulna R M2 L M YA MBA 1880–1510 cal BCE ETH-17760: 3380 ± 70 BP

Tolochenaz, Le Boiron, La Caroline LaC1 st. 1052 P radius R M2 L M A FBA (HaB3)

LaC2 st. 1061 P radius R M2 R F A FBA (early HaB1)

LaC3 st. 1074 P tibia R M1 L I A FBA (HaB2)

LaC4 st. 1111 P ulna L PM1 L M (?) A FBA (recent HaB3)

LaC5 st. 1057 A ulna R M2 R I C FBA (HaB)

LaC6 st. 1080 P humerus I2 R I C FBA (HaB3)

LaC7 st. 1018 P clavicle R I2 R I C FBA (HaB1�)

LaC8 st. 1070 P femur L - I C FBA (HaB)

LaC9 st. 1083 P tibia R - I A FBA (HaB3)

LaC10 st. 1071 P femur R - I A FBA (HaB3)

LeB1 tb XXIV nd femur L M2 L FBA (?)

LeB2 tb IX-X P femur R - M FBA (early HaB3)

LeB3 nd femur R - FBA

LeB4 tb I nd femur R M2 R FBA

LeB5 tb III P femur L M2 L FBA (recent HaB3)

LeB6 nd humerus L M2 R FBA

aThe chronology is according to [13, 97, 98].
bVF 95/st 4: presence of grave goods that could not be attributed to a specific individual.

Abbreviations: R = right; L = left; child (C) = 5–15 yrs; adolescent (a) = 16–19 yrs; young adult (YA) = 20–29 yrs; adult (A) > 30 yrs; M = male; F = female;

I = indeterminate; EBA = Early Bronze Age; MBA = Middle Bronze Age; FBA = Final Bronze Age; Grave goods: P = present, A = absent, ND = not defined.

https://doi.org/10.1371/journal.pone.0245726.t001
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Final Bronze Age in order to highlight any possible changes in agricultural practices across

time. The C3 plant samples include hulled barley (Hordeum vulgare), emmer and einkorn

wheat (Triticum dicoccum, Triticum monococcum), and pulses, such as beans (Vicia faba), for a

total of 25 samples. The C4 plant samples include five seeds of broomcorn and foxtail millet

(Panicum miliaceum, Setaria italica). Each isotopic measurement corresponds to the analysis

of one seed.

Methods

La Barmaz humans are in storage at the University of Geneva and animals are in the deposit of

the Office for Archaeological Research of Valais; sampling permits were issued by the Office

for Archaeological Research of Valais. Vufflens-la-Ville humans are stored in the Cantonal

Museum of Archaeology and History of Lausanne and Tolochenaz humans in the store of

Archeodunum SA and sampling permits were granted by the Cantonal Museum of Archaeol-

ogy and History of Lausanne. Animals from Tougues and Chindrieux are stored in the deposit

of the DRAC Auvergne-Rhône-Alpes Regional Archaeology Service and Rances animals are in

the Natural History Museum of Geneva and the DRAC Auvergne-Rhône-Alpes provided the

sampling authorizations. The botanical remains are stored in the Archaeological Research

Center of Clermont-Ferrand and study permission was provided by the National Institute for

Preventive Archaeological Research (INRAP).

Samples were prepared at the LAMPEA (UMR 7269, Aix-en-Provence, France) and the

EA-IRMS analyses were performed at the Iso-Analytical Limited Laboratory (Cheshire, UK).

The seeds and chaff were analyzed following the acid-base-acid protocol [69]. The samples

were soaked in HCl (0.5 M, 70˚C, for 30–60 min), then rinsed three times with distilled water

and soaked in NaOH (0.1 M, 70˚C, 60 min) and rinsed again and soaked in HCl (0.5 M, 70˚C,

for 30–60 min). Once dried in the oven, the samples were finely powdered.

Bone and dentine collagen was extracted following [99] and modified by [100]. Approxi-

mately 0.5 g of cortical bone was cleaned by surface abrasion to remove superficial contami-

nants and demineralized (0.5 M HCl, 4˚C, for 7–14 days). The samples were then rinsed

several times with distilled water and gelatinized (pH 3, 75˚C, for 48 h). The resulting solution

was filtered using an Ezee™ filter and the supernatant was freeze-dried for 48 h. Similarly, for

each selected tooth, half the crown was cut with a saw and the samples were demineralized (0.5

M HCl, 4˚C, for ca. 20 days). Once the dentine was soft, the samples were rinsed with distilled

water and gelatinized (pH 3, 75˚C, for 48 h). The solution was then filtered with Ezee™ filter

and the supernatant was freeze-dried for 48 h, as was done for the bone.

Tooth enamel carbonates was pre-treated following the protocol of [101] on enamel pow-

der. The samples were placed in NaOCl (2%–3%, 0.1 ml/1 mg, 24 h), rinsed and soaked in

CH3COOH to remove diagenetic carbonates (1 M, 1 h, 1 mL/1 mg), rinsed again in a centri-

fuge and dried (65˚C, 12 h).

No consensual criteria exist to assess the preservation of charred seeds and chaff and

whether or not the resultant values are reliable. Here, the criteria proposed by [102] for %C, %

N and C:N ratio are considered. Taking into account the average offsets between uncarbonized

crop seeds and those heated for four, eight or 24 h at 215, 230, 245 or 260˚C, the δ13C and δ15N

values of carbonized crop were corrected for the charring effect by subtracting 0.11‰ and

0.31‰, respectively, according to the recommendations of [103]. Concerning the three chaff

samples of Triticum, no criteria to establish the reliability of the results exist. Following the

suggestions of two experimental studies, considering the offset between cereal grain and rachis

[70, 104], +2.4‰ in δ15N and +1.9‰ in δ13C were added to the wheat chaff values in order to

make the seed and the chaff isotope results comparable.
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Bone and dentine collagen preservation was checked according to the following criteria: the

yield of extraction (� 1%), the percentages of C, N and S (%C� 30%, %N� 10% and %

S� 0.15%), and the atomic C:N, C:S and N:S ratio (2.9 < C:N< 3.6, C:S = 600 ± 300 and N:

S = 200 ± 100) [105–108]. For the tooth enamel carbonates, no set rules exist to distinguish

reliable apatite samples [109, 110] because the apatite carbonate preservation in archaeological

samples is difficult to estimate [111]. Even though enamel can be subject to alteration in cer-

tain burial conditions [111, 112], enamel is less porous than bone, limiting the risk of diage-

netic modifications induced by contamination and degradation [111, 113].

The international standards used for collagen and bulk plants are bovine liver (IA-R042), a

mixture of ammonium sulfate (IA-R045) and beet sugar (IA-R005), and a mixture of sugar

cane (IA-R006) and ammonium sulfate (IA-R046). For carbonate apatite, they are calcium car-

bonate (IA-R022), carbonatite (NBS-18), chalk (IA-R066), and Carrara marble (IAEA-CO-1).

Measurement reproducibility of a repeat sample is below 0.1‰ for δ13Ccoll, δ
13Cenamel, δ

15N

and δ34S values.

To reconstruct the dietary scenarios, two offsets were used for carbon: (a) 4.8‰ between

the δ13C values of the plants and the collagen of their consumers and (b) 0.8‰ between the

carbon isotope values of the collagen of consumers of the previous trophic level [114]. For

nitrogen isotope compositions, a spacing of 4.0‰ was considered between the diet and the

consumer of two different trophic levels [114].

For data interpretation and statistical analyses, Microsoft Excel and R v.3.6.1 were used.

Bayesian models were elaborated using the software FRUITS [115].

Results

Botanical data

Of the 30 botanical remains, only one barley seed (VR6) was excluded after pre-treatment

because it did not have enough material for analysis. The %C, %N and the C:N atomic ratios

for all the other charred seeds fit within the expected ranges [102], with the exception of the %

C of VE9 which is lower than in the others (17.7%) (Table 2).

The isotopic ratios of the C3 plants range from 1.1‰ to 6.7‰ for δ15N (3.6‰ ± 1.5‰,

n = 24) and from 27.0‰ to -15.3‰ for δ13C (-24.3‰ ± 2.2‰, n = 24). The C4 samples results

range from 5.3‰ to 6.4‰ for δ15N (5.7‰ ± 0.5‰, n = 5) and from -10.8‰ to -9.4‰ for δ13C

(-10.3‰ ± 0.5‰, n = 5). When pooling together all the samples of the same species in each of

the different phases, no significant differences in N among species are detected, possibly due to

the small sample size (approximate Kruskal-Wallis p = 0.103). In fact, the δ15N value of millet

appears higher when compared to the other species. Significant differences by species are

highlighted for δ13C (p = 0.001). When considering only C3 plants, no significant differences

appear (p = 0.498) (Fig 2, Table 3).

Animal and human data

Of the 22 animal samples, 19 have a good yield. Collagen preservation and carbon, nitrogen

and sulfur are present in enough quantity attesting to the reliability of the results. Two cattle

(BANF6 and BANF7) with %N, %C and %S below the accepted values but very close to the

accepted limits, have been included in the study but are considered with caution. Similarly, a

pig (TO9) showing C:S and N:S slightly below the accepted criteria has been included in the

study and is also evaluated with caution (Table 4). A pig, a sheep/goat and a pike (BANF2,

BANF3, CHIN4) have been excluded because the %N, %C, %S, C:S and N:S do not fall within

the acceptable range (Table 4).
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The terrestrial animals show δ15N values between 2.7‰ to 8.7‰ (5.8‰ ± 1.6‰, n = 16),

between -22.7‰ to -20.0‰ for δ13C (-21.1‰ ± 0.5‰, n = 16) and between 0.7‰ and 8.7‰

for δ34S (4.2‰ ± 2.1‰, n = 15). Two of the pigs, RCV10 and TO7, have high nitrogen values

suggesting an important animal protein intake, whereas all the other pigs present typical herbi-

vore values.

A Kruskal-Wallis test does not highlight differences for δ13C and δ15N between the Early,

Middle and Final Bronze Age (p = 0.758 and p = 0.102, respectively), conversely to δ34S which

displays significant differences (p = 0.027) (Table 5). An Exact Wilcoxon Mann Whitney test

between the Early and Final Bronze Age animals does not show any significant differences

(p = 0.212). An Exact Wilcoxon Mann Whitney test for the Middle Bronze Age animals was

not run because only two samples are available. However, it is evident that these individuals

have higher sulfur values than all the other animals.

The three pike range from 9.8‰ to 10.7‰ for δ15N (10.3‰ ± 0.5‰, n = 3), between

-23.8‰ and -21.5‰ for δ13C (-22.9‰ ± 1.2‰, n = 3) and between -5.7‰ and -1.8‰ for δ34S

Table 2. Isotopic results of the archaeological plant remains from Chens-sur-Léman, Pré d’Ancy (PA) and Vereı̂tre (VE).

Id Chronological period Species Sample %N δ15NAIR %C δ13CV-PDB C/N Δ13Ca

PAbot1 MBA-FBA (MB II-FB I) Vicia faba seed 4.7 2.6 44.9 -23.1 11.2 17.0

PAbot2 MBA-FBA (MB II-FB I) Hordeum vulgare seed 2.5 3.0 57.8 -24.8 27.2 18.8

PAbot3 FBA (FB IIb-IIIa) Panicum miliaceum seed 3.6 5.5 51.7 -9.4 16.9

PAbot4 MBA-FBA (BM II-FB I) Hordeum vulgare seed 2.0 3.6 61.0 -24.9 35.1 18.9

PAbot5 MBA-FBA (BM II-FB I) Hordeum vulgare seed 2.0 4.0 55.6 -24.2 31.9 18.2

PAbot6 MBA-FBA (MB II-FB I) Fabaceae seed 4.5 3.3 50.6 -15.3 13.1 9.0

PAbot7 MBA-FBA (MB II-FB I) Fabaceae seed 7.7 1.8 56.3 -23.9 8.5 17.9

PAbot8 FBA (FB IIb/IIIa) Fabaceae seed 6.3 1.1 53.7 -24.2 10.0 18.2

PAbot9 EBA Triticum sp seed 3.0 4.4 60.1 -27.0 23.5 21.2

PAbot10 EBA Triticum sp seed 3.0 3.7 60.6 -26.2 23.3 20.3

PAbot11 EBA Triticum sp seed 1.9 3.6 53.8 -23.9 32.4 18.0

VE1 FBA (FB IIb) Triticum dicoccum seed 1.7 2.1 48.7 -24.7 33.3 18.7

VE2 FBA (FB IIb) Triticum dicoccum seed 2.8 3.4 43.9 -23.6 18.5 17.5

VE3 FBA (FB IIa) Triticum dicoccum seed 1.9 6.3 34.4 -23.6 21.5 17.5

VE4 FBA (FB IIa) Triticum dicoccum seed 3.0 3.1 54.7 -24.4 21.5 18.4

VE5 FBA (Early Ha) Hordeum vulgare seed 6.1 2.2 62.1 -24.3 12.0 18.2

VE6 FBA (Early Ha) Hordeum vulgare seed Not enough material to be analysed
VE7 FBA (FB IIa) Panicum miliaceum seed 3.0 6.1 52.7 -10.8 20.4

VE8 FBA (FB IIa) Vicia sp seed 5.6 2.8 61.6 -26.1 12.9 20.2

VE9 FBA (FB IIa) Setaria italica seed 1.1 6.4 17.7 -10.5 19.2

VE10 FBA (Early Ha) Vicia sp seed 3.1 6.7 52.1 -24.1 19.6 18.0

VE11 FBA (Early Ha) Vicia sp seed 1.6 6.5 46.4 -24.5 34.0 18.5

VE12 FBA (Early Ha) Vicia sp seed 2.0 5.3 64.6 -26.5 37.1 20.5

VE13 FBA (FB IIa) Triticum monococcum/dicoccum chaff 0.8 4.6 62.1 -25.4 87.4 17.4

VE14 FBA (Early Ha) Triticum monococcum/dicoccum chaff 0.7 2.5 59.4 -25.8 100.4 17.7

VE15 FBA (FB IIa) Setaria/Panicum seed 3.0 5.4 61.0 -10.1 23.9

VE16 FBA (FB IIa) Setaria/Panicum seed 2.7 5.3 61.8 -10.5 26.3

VE17 FBA (FB IIa) Triticum sp seed 2.1 2.6 54.0 -23.5 29.4 17.4

VE18 FBA (FB IIa) Triticum sp seed 2.6 5.7 53.1 -24.5 24.1 18.4

VE19 FBA (FB IIa) Triticum sp chaff 0.5 2.7 60.1 -25.3 133.3 17.2

aCalculated on the corrected values (-0.11‰ to δ13CV-PDB of the charred seeds and +1.9‰ to δ13CV-PDB of the chaff) using AIRCO2_LOESS data calibrator [71].

https://doi.org/10.1371/journal.pone.0245726.t002
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(-4.3‰ ± 2.1‰, n = 3). The negative sulfur values are not surprising considering that the δ34S

of sulfates from riverine ecosystems mainly range from -5 to +15‰, with outliers resulting

from geochemical processes of sulfate reduction or sulfide oxidation [61, 116, 117].

Bone collagen was extracted from 41 humans. All the results obtained from La Barmaz and

Vufflens respect the quality criteria; three samples from Tolochenaz, LaC1, LaC4 and LaC10,

were excluded because the %N and %C values do not respect the accepted ranges. Due to dat-

ing problems, LeB1 is excluded from the interpretations.

The δ15N values range between 7.2‰ and 10.1‰ (8.6‰ ± 0.8‰, n = 37), δ13C between

-21.2‰ and -17.6‰ (-19.8‰ ± 1.2‰, n = 37) and δ34S between -2.6‰ and 8.9‰ (2.9‰ ±
2.1‰, n = 36) (Table 6).

When pooling together all the individuals from the three sites, significant differences appear

for δ15N (p< 0.001), δ13C (p< 0.001) and δ 34S (p = 0.002) (Table 7). An Exact Wilcoxon test

between pairs of sites (Table B in S1 Text) shows significant differences for δ13C values for

Tolochenaz when compared to Vufflens (p< 0.001) and La Barmaz (p< 0.001). For δ15N,

Fig 2. Box-plots showing the stable isotope results for wheat chaff and charred seeds. Corrected values have been used for a) δ15N results (-0.31‰ for the grains

and +2.4‰ for the chaff to eliminate the charring effect) and b) δ13C results (-0.11‰ for the grains and +1.9‰ for the chaff). The boxes represent the first and third

quartiles and the whiskers the maximum and minimum values, excluding the outliers. The continuous line illustrates the median and the cross represents the mean.

For δ13C results only C3 plants are represented.

https://doi.org/10.1371/journal.pone.0245726.g002

Table 3. Statistical parameters for the botanical remains.

δ15NAIR
a δ13CV-PDB

b

species n min max Mean (1sd) p (Kruskas Wallis) min max Mean (1sd) p (Kruskas Wallis) p (Kruskas Wallis)

wheat 12 1.8 7.0 4.7 (1.6) 0.103 -27.1 -23.4 -24.4 (1.2) 0.001 0.498

barley 4 1.9 3.7 2.9 (0.8) -24.9 -24.2 -24.7 (0.4)

pulses 8 0.8 6.4 3.5 (2.1) -26.5 -15.3 -23.6 (3.5)

millet 4 5.0 6.1 5.4 (0.5) -10.9 -9.6 -10.4 (0.5)

a Correction of -0.31‰ for δ15NAIR to eliminate the effect of carbonization and +2.4‰ for chaff.
b Correction of -0.11‰ to δ13CV-PDB for the charred seeds and +1.9‰ for the chaff.

https://doi.org/10.1371/journal.pone.0245726.t003
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slight differences are evident between La Barmaz and Vufflens (p = 0.040) and between Vuf-

flens and Tolochenaz (p< 0.001). For δ34S, differences are present between La Barmaz and

Vufflens (p = 0.009) and between La Barmaz and Tolochenaz (p = 0.004). Differences within

each community have also been tested according to biological parameters. Given the number

of individuals, statistical analyses were performed only on La Barmaz and Vufflens when con-

sidering sex differences. No statistically significant differences appear within these communi-

ties (Table C in S1 Text). Concerning age-at-death, statistical analysis was only possible for

Vufflens and no statistically significant differences have been detected (Table C in S1 Text).

When considering presence-absence of grave goods, no differences are highlighted for La Bar-

maz (δ13C, p = 0.508; δ15N, p = 0.086; δ34S, p = 0.422). For Vufflens and Tolochenaz, given the

difficulties in attributing specific grave goods to some individuals, statistical analyses were not

performed for this parameter.

Dentine collagen was extracted from 35 individuals and all the samples respect the quality

conditions. The δ15N values range between 7.3‰ and 10.4‰ (9.1‰ ± 0.9‰, n = 34), for δ13C

between -21.5‰ and -16.4‰ (-19.8‰ ± 1.5‰, n = 34). Significant differences occur for δ13C

(p< 0.001) (Table 7). An Exact Wilcoxon test highlights differences for δ13C between La Bar-

maz and Tolochenaz (p< 0.001) and between Vufflens and Tolochenaz (p< 0.001) (Table B

in S1 Text). Like for the bone collagen results, Tolochenaz δ13C values are more enriched in
13C compared to the other two sites. The test highlights no differences in δ15N values among

Table 4. δ15N, δ13C and δ 34S values of animal bone collagen.

ID Chronological

period

Species/family Skeletal element N (%) δ15NAIR (‰) C (%) δ 13CV-PDB

(‰)

S (%) δ 34SV-CDT

(‰)

C:N C:S N:S

BANF1 EBA Sus domesticus humerus 13.7 5.8 37.7 -21.0 - - 3.2 - -

BANF2 EBA Ovis aries/Capra
hircus

tibia 3.3 5.3 9.5 -21.2 0.06 1.8 3.4 399.0 117.4

BANF3 EBA Sus domesticus humerus 0.1 - 1.5 - 0.05 2.9 18.6 88.3 4.8
BANF5 EBA Ovis aries/Capra

hircus
tibia 14.6 5.3 39.7 -21.0 0.20 4.3 3.2 532.2 168.5

BANF6 EBA Bos taurus talus 10.3 4.8 28.0 -21.0 0.13 3.5 3.2 565.8 179.5

BANF7 EBA Bos taurus talus 9.9 4.7 27.3 -21.2 0.12 3.8 3.2 588.4 182.8

BANF8 EBA Bos taurus talus 14.9 3.9 40.6 -21.1 0.20 5.2 3.2 548.2 173.2

RCV4 MBA Bos taurus humerus 14.3 5.9 39.2 -21.4 0.20 8.4 3.2 403.3 127.1

RCV10 MBA Sus domesticus mandible 12.7 8.7 34.9 -20.0 0.18 8.7 3.2 431.1 136.2

TO1 FBA Ovis aries radius 15.1 6.5 41.1 -21.6 0.27 3.1 3.2 389.9 122.3

TO2 FBA Bos taurus radius 14.7 6.6 40.1 -21.4 0.25 4.7 3.2 339.0 106.2

TO4 FBA Cervus elaphus radius 15.2 5.9 41.7 -21.3 0.28 1.8 3.2 373.4 116.5

TO5 FBA Capra hircus ulna 14.2 3.7 39.1 -21.4 0.31 3.7 3.2 331.1 102.1

TO7 FBA Sus domesticus humerus 14.9 8.5 41.0 -20.3 0.29 3.5 3.2 298.5 91.7

TO8 FBA Sus domesticus humerus 15.0 6.4 41.8 -20.4 0.33 4.4 3.3 386.2 121.1

TO9 FBA Sus domesticus mandible 14.2 6.3 39.6 -21.0 0.35 3.2 3.3 335.2 104.5

TO11 FBA Bos taurus humerus 14.6 2.7 40.0 -22.0 0.27 0.7 3.2 403.3 127.1

TO13 FBA Ovis aries tibia 14.2 7.0 39.2 -20.7 0.31 4.2 3.2 431.1 136.2

CHIN1 FBA Esox lucius vertebra 14.9 10.7 45.3 -21.5 0.60 -1.8 3.5 199.1 56.4

CHIN2 FBA Esox lucius vertebra 14.5 9.8 44.2 -23.4 0.55 -5.7 3.5 213.0 60.3

CHIN3 FBA Esox lucius vertebra 15.1 10.4 45.3 -23.8 0.61 -5.2 3.5 198.2 57.0

CHIN4 FBA Esox lucius hyomandibular 1.5 10.3 7.0 -24.1 0.21 -6.7 5.4 89.2 16.5

Sites: Collombey-Muraz, La Barmaz (BANF); Rances, Champ Vully (RCV); Chindrieux (CHIN); Chens-sur-Léman, Tougues (TO).

https://doi.org/10.1371/journal.pone.0245726.t004
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the three communities. In terms of biological criteria, differences by sex are non-significant.

With regards to age-at-death, statistical analysis is only possible for Vufflens and no differences

are detected (Table C in S1 Text). No differences are present in La Barmaz when results are

analyzed by presence-absence of grave goods (δ13C, p = 0.158; δ15N, p = 0.222).

The presence of significant differences between the bone and the teeth values of each individ-

ual within each human group were tested. The Exact Wilcoxon test for dependent samples high-

lights differences in La Barmaz for the δ15N values, as teeth values are higher than those from

bone (p = 0.024). In Vufflens and Tolochenaz differences are evident for δ13C values. In the Vuf-

flens individuals, bone has higher δ13C values than teeth (p = 0.019), whereas in Tolochenaz the

opposite trend is observable, teeth being enriched in 13C as opposed to bone (p = 0.046) (Table 8).

For the tooth enamel carbonates, 34 individuals were analyzed for δ13Cenamel. Values range

from -15.4‰ to -9.1‰ (-12.9 ± 1.5‰, n = 34). Significant differences are present among the three

sites (Exact Kruskal Wallis test, p< 0.001) (Tables 6 and 7, S4 Fig). A Wilcoxon test comparing

the sites by pairs reveals significant differences (Table B in S1 Text). The three groups clearly show

different patterns indicating specific diets. Like for the bone and the dentine collagen, Tolochenaz

displays higher δ13C values compared to the other two groups. Vufflens compared to La Barmaz

also shows slightly higher δ13C values than La Barmaz. No significant differences are observable

between La Barmaz and Vufflens according to sex and age-at-death (Table C in S1 Text).

Discussion

Soil management and farming strategies

The wide δ15N plant range (Δ15N = 5.9) reveals an important variability in nitrogen isotopic

values. The use of manure to improve soil fertility leads to an enrichment in 15N of cultivated

Table 5. Statistical parameters for the animal bone collagen.

δ15NAIR δ13CV-PDB δ34SV-CDT

species n min max Mean

(1sd)

p (Kruskas

wallis)

min max mean

(1sd)

p (Kruskas

wallis)

min max mean

(1sd)

p (Kruskas

wallis)

Collombey-Muraz, La

Barmaz Early Bronze Age

Pig 1 5.8 5.8 - 0.102 -21.0 -21.0 - 0.758 - - - 0.027
Sheep/

goat

1 5.3 5.3 - -21.0 -21.0 - 4.3 4.3 -

cattle 3 3.9 4.8 4.5 (0.5) -21.2 -21.0 -21.1

(0.1)

3.5 5.2 4.2 (0.9)

TOT 5 3.9 5.8 4.9 (0.7) -21.2 -21.0 -21.1
(0.1)

3.5 5.2 4.2 (0.8)

Rances, Champ Vully Middle

Bronze Age

pig 1 8.7 8.7 - -20.0 -20.0 - 8.7 8.7 -

cattle 1 5.9 5.9 - -21.4 -21.4 - 8.4 8.4 -

TOT 2 5.9 8.7 7.3 (2.0) -21.4 -20.0 -20.7
(1.0)

8.4 8.7 8.6 (0.2)

Chens sur Léman Final

Bronze Age

pig 3 6.3 8.5 7.1 (1.3) -21.0 -20.3 -20.6

(0.4)

3.2 4.4 3.7 (0.6)

Sheep/

goat

3 3.7 7.0 5.7 (1.8) -21.6 -20.7 -21.2

(0.4)

3.1 4.2 3.7 (0.6)

cattle 2 2.7 6.7 4.6 (2.8) -22.1 -21.4 -21.7

(0.5)

0.7 4.8 2.7 (2.9)

Red deer 1 5.9 5.9 - -21.3 -21.3 - 1.8 1.8 -

TOT 9 2.7 8.5 5.9 (1.7) -22.1 -20.3 -21.1
(0.4)

0.7 4.8 3.3 (1.3)

pike 3 9.8 10.7 10.3

(0.5)

-23.8 -21.5 -22.9

(1.2)

-5.7 -1.8 -4.3

(2.1)

https://doi.org/10.1371/journal.pone.0245726.t005
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plants, proportional to the duration and intensity of fertilization. According to the δ15N ranges

established by [70], even though a limited number of samples are present for the Early and

Middle Bronze Age, the present data show a certain degree of homogeneity in δ15N values for

these two periods because most of them are between 3 and 4‰. Conversely, the results of the

final phases of the Bronze Age show 1) a greater variability and 2) an enrichment in 15N com-

pared to the previous chronological phases (Fig 3A). This could be due to an increase in the

use of manure during the Final Bronze Age. Moreover, all the samples come from the same

site which means the change in the isotopic signal can be followed over time, a change that

could mainly reflect modifications in human agricultural practices because the settlement had

Table 7. Statistical parameters of isotope data for bone and dentine human collagen and apatite.

δ15N δ13Ccoll δ34S δ13Cenamel

Collombey-Muraz, La

Barmaz

Bone

n min max Mean

(1sd)

n min max Mean

(1sd)

n min max Mean

(1sd)

13 7.7 10.1 8.6 (0.7) 13 -21.2 -20.1 -20.6

(0.3)

13 -0.8 4.2 1.9 (1.4)

Dentine Enamel

n min max Mean

(1sd)

n min max Mean

(1sd)

n min max Mean

(1sd)

12 7.9 11.8 9.2 (1.1) 12 -21.1 -20.0 -20.6

(0.4)

12 -15.4 -12.9 -14.3

(0.7)

Vufflens-la-Ville, En

Sency

Bone

n min max Mean

(1sd)

n min max Mean

(1sd)

n min max Mean

(1sd)

12 8.4 10.0 9.1 (0.5) 12 -20.9 -20.3 -20.5

(0.2)

12 2.0 4.4 3.1 (0.7)

Dentine Enamel

n min max Mean

(1sd)

n min max Mean

(1sd)

n min max Mean

(1sd)

12 8.5 10.4 9.4 (0.7) 12 -21.5 -20.4 -20.8

(0.3)

12 -13.7 -12.8 -13.5

(0.3)

Tolochenaz, Le Boiron, La

Caroline

Bone

n min max Mean

(1sd)

n min max Mean

(1sd)

n min max Mean

(1sd)

12 7.3 9.7 8.1 (0.7) 12 -20.4 -17.2 -18.2

(0.9)

11 1.2 8.9 4.3 (2.3)

Dentine Enamel

n min max Mean

(1sd)

n min max Mean

(1sd)

n min max Mean

(1sd)

10 7.3 10.1 8.7 (1.1) 10 -20.3 -16.4 -17.5

(0.7)

10 -13.3 -9.1 -10.3

(1.2)

p kruskal Wallis (bone) n

37

p < 0.001 n

37

p < 0.001 n

36

p = 0.002

P kruskal Wallis (dentine) n

34

p = 0.124 n

34

p < 0.001 p kruskal Wallis

(enamel)

N 34 p < 0.001

https://doi.org/10.1371/journal.pone.0245726.t007

Table 8. Exact Wilcoxon-Pratt signed-rank test for bone and dentine collagen.

Collombey-Muraz, La Barmaz Vufflens-la-Ville, En Sency Tolochenaz, Le Boiron, La Caroline

δ13C, p = 0.835 δ13C, p = 0.019 δ13C, p = 0.046

δ15N, p = 0.024 δ15N, p = 0.066 δ15N, p = 0.093

https://doi.org/10.1371/journal.pone.0245726.t008
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a continuous chronology. Millets and legumes warrant particular attention. Not only are mil-

lets well represented in this and other coeval sites [44, 46, 118–121], but all the foxtail and

broomcorn millet seeds of this settlement show δ15N values higher than 5‰. These figures

could suggest that these plants were well manured, supporting the importance of these crops

in the local economy and, presumably, in the human and/or animal diet. Legumes, whose val-

ues are usually lower than those of cereal plants, are less sensitive to the effects of manuring.

According to [70], only extremely intensive manuring (> 35 ton/ha for a prolonged duration)

increases legume δ15N considerably above 0‰. Here, pulses, mainly represented by beans,

show values of up to 6.4‰, indicating a high level of fertilization. Such results seem to point to

intensified agricultural activity and the increased impact of human actions on farming pro-

duce, supporting the idea of more intense agricultural practices during the Bronze Age. This

result is in line with the increased demographic pressure suggested by the growing number of

settlements and necropoles around Lake Geneva during that time.

An additional parameter to define agricultural and pastoral strategies is the δ15N values

from wild and domesticated herbivores. From these animal data, it is possible to estimate the

values of the plants used to feed them. By inferring the herbivore forage isotope values from

bone collagen it is possible to assess the stable isotope values of crops against those of forage.

The estimated herbivore forage values represent a “sampling” of local vegetation to which crop

values can be compared with to infer agricultural strategies and human practices like manur-

ing and irrigation [69, 75]. The δ15N values of the estimated forage suggest that the plants con-

sumed by these animals do not fit within the intervals of the fertilized crops (Fig 4). Two

hypotheses can therefore be proposed: the first is that the animals mainly consumed wild

plants, likely from more humid or forested areas, while the second presupposes a separate cul-

tivation of plants for fodder. If the latter proposition is retained, it is possible that these crops

Fig 3. Stable carbon and nitrogen isotope ratios for the archaeobotanical remains. Corrected values have been used for a) δ15N results (-0.31‰ for the grains and

+2.4‰ for the chaff to eliminate the charring effect) and b) δ13C results (-0.11‰ for the grains and +1.9‰ for the chaff). A) Individual data and means (1SD) values

are reported for C3 plants (wheat and barley) and C4 plants (foxtail and broomcorn millet) according to the chronological phases; B) Water status measured according

to the ranges proposed by [104].

https://doi.org/10.1371/journal.pone.0245726.g003
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either underwent less intense fertilization compared to crops for human consumption or that

they came from unmanured pastures.

Carbon values of botanical remains reflect the water conditions from which plants have

grown [71, 104]. Taking into account the CO2 changes that occurred throughout the Holo-

cene, the plant water availability was estimated using the Δ13C values (online resource: http://

web.udl.es/usuaris/x3845331/AIRCO2_LOESS.xls; [71]), making it possible to compare

archaeological data over time. Although the quality and quantity is different according to each

Bronze Age phase, the results highlight that barley, wheat and legumes did not suffer hydric

stress (Fig 3B). Paths lined by small ditches and small artificial channel structures that cana-

lized water towards fields were discovered in the site from which the carpological remains

come from [47], suggesting that water was provided by humans through irrigation infrastruc-

tures. Usually, Δ13C values for barley grains are� 1‰ higher than those for wheat grown in

similar water conditions, mainly because of a difference in crop cycles [104]. In this study, bar-

ley shows lower Δ13C values compared to wheat and pulses. It is, therefore, likely that barley

Fig 4. Scatter plot of δ13C and δ15N bone collagen values for human, animal and botanical remains according to their chronological phases. C3 plants include

wheat and barley, C4 plants include broomcorn and foxtail millets (representation of mean and 1SD for the plants). Abbreviations: TO = Chens sur Léman, Tougues.

https://doi.org/10.1371/journal.pone.0245726.g004
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was less watered than the other species. If the main crops were more tended to through irriga-

tion, these results suggest that wheat and pulses were more important for cultivation than bar-

ley. In contrast to the archaeobotanical analysis of the site which indicates that barley was the

main crop [122], this suggestion is, nevertheless, consistent with other local and western Swit-

zerland results where wheat prevails [42, 119–121].

Despite the small archaeobotanical sample size making it difficult to present a global sce-

nario for potential changes in farming practices over time, these results are comparable to

those of other diachronic Bronze Age studies in southern Europe, where a similar surge in

manuring practices and general good water conditions have also been observed [123].

Reconstructing dietary behaviors

Domestic and wild animal feedings. The δ15N and δ13C results for domestic herbivores

(sheep/goat, cattle and pig) show no significant differences for carbon and nitrogen values.

This reveals the global homogeneity of isotopic values throughout the Bronze Age (Fig 4). Not-

withstanding, statistical differences occur for sulfur values (Table 5): the Rances animals have

higher δ34S values than those of La Barmaz and Chens-sur-Léman (δ34S mean = 8.6‰ vs 4.2‰

and 3.3‰, respectively). Rances is situated further north than the other sites. It is possible that

the environment where these animals lived was slightly different from the others, affecting the

local values at the base of the food chain and not necessarily implying a diverse diet. All the

animals, in fact, indicate a consumption of resources from a temperate environment, mostly

constituted of C3 type plants. As previously mentioned, the fodder for the domestic herbivores

does not appear to have been manured, indicating that these animals could have consumed

wild plants, or non-fertilized cultivated plants (Fig 4). Regardless, given that the animal results

are all homogeneous, no differential livestock strategies are detected for the Bronze Age.

The three pike values, analyzed in order to understand the possible contribution of aquatic

resources to the human diet, are in line with archaeological freshwater fish values in an Alpine

environment [124].

The human diet. Throughout the sites and phases the local resources are similar, the

three human groups can be directly compared. Any differences detected in the human diets

must, therefore, depend on different dietary choices. Significant differences for δ13C, δ15N and

δ34S among the three groups are present, suggesting changes in dietary habits throughout the

Bronze Age (Fig 4). These results are likely due to 1) a greater variability in food consumption

over time and 2) the introduction of new resources in the diet at the end of the Bronze Age.

The wide distribution of δ13C values indicates diverse consumption of C3 and C4 plants,

whereas the δ15N and δ34S ranges highlight different animal protein intake and, most likely,

from different areas.

The bone collagen δ15N and δ13C values of the Early Bronze Age La Barmaz humans suggest

a mixed terrestrial diet mainly based on C3 plants and animal resources (Fig 4). This is sup-

ported by the offset between humans and animals, Δ13Chumans-animals = 0.5‰ and Δ15Nhumans-

animals = 3.7‰ (Table D in S1 Text) which are typical values falling within the ranges estimated

between two consecutive trophic level. Furthermore, the quite narrow Δ13C and Δ15N spacings

(Δ13C = 1.1‰ and Δ15N = 2.3‰) suggest that these individuals consumed similar foodstuffs.

By applying a Bayesian model like FRUITS which takes into account the coeval isotopic data

for animal and plant remains, the contribution of the different food sources to the diet can be

better estimated. Fig 5A shows the scenario elaborated by FRUITS (S1 Table). Cereals like

wheat and barley played a major role in the diet, representing 54.5%. They are followed by ani-

mal products, whose contribution is estimated at almost 30% (26.8%). The importance of ani-

mal foodstuff is also supported by the Δ13Chumans-plants and Δ15Nhumans-plants offsets, which
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equal 5.2‰ and 5‰, respectively, and are higher than expected from just C3 plant consump-

tion alone (Table D in S1 Text). This hypothesis is also confirmed by the scenario presented in

Fig 5B, where the La Barmaz humans fit between the ranges of 100% C3 plant diet and 100%

herbivore and pig meat diet. In addition, legumes may have also contributed to the protein

intake but as no data are available for these plants it is not possible to estimate their contribu-

tion. Little C4 plants (14.9%) seem to have been consumed by this community.

Sulfur results support an intake of terrestrial resources. All the δ34S values are below 6‰

and most of them are between 0‰ and 6‰, the typical range for the terrestrial environment.

Furthermore, no significant correlation is observed between δ15N and δ34S values (Rho =

-0.11, p = 0.70). Two individuals, BA5 and BA26, have negative δ34S values. Considering that

all the pikes have negative values, freshwater fish cannot be excluded from the diet of these two

people. Moreover, δ15N values are also quite enriched in 15N (BA5 = 8.4‰ and

BA26 = 10.0‰). However, a significant consumption of freshwater fish is less likely for the

rest of the group as the δ13C and δ34S values reflect a more terrestrial diet and, according to the

FRUITS’ model, the contribution of fish to the diet is very low (3.7%).

When considering the anthropological data, no dietary differences are recorded according

to age and sex (Table C in S1 Text). Indeed, this suggests that sex and age probably did not

lead to differential dietary practices. A similar assessment is proposed in northern Italy [22,

125] and in central France [126], suggesting an intra-group homogeneity in dietary patterns

for the Early Bronze Age. However, some exceptions have been recorded, like in southern Ger-

many [23] and in Poland, where small differences in favor of elder men suggest that mature

adults had a diet more enriched in animal protein [52, 127].

The δ15N and δ13C bone collagen values from the Middle Bronze Age individuals of Vufflens

indicate a mixed terrestrial diet, which would have been similar to those from La Barmaz. In

order to estimate the Δ13C and Δ15N offsets between humans and animals of the Middle Bronze

Age, the animals from the three phases which displayed a herbivore diet were grouped together.

The Δ13Chumans-animals (= 0.7‰) and Δ15Nhumans-animals (= 3.7‰) values are typical collagen off-

sets recorded between two adjacent trophic levels. The δ15N and δ13C human values display a

limited range (Δ13C = 0.6‰ and Δ15N = 1.6‰). The dietary intake was, therefore, rather uni-

form within this community. According to FRUITS’ model, it seems C3 cereal plants were the

main component of the diet (Fig 5C), with an estimated contribution equal to 57.6%. The ani-

mal protein intake is estimated at 25.6%. The Δ15Nhumans-plants offset is quite important, 5.9‰,

suggesting additional resources other than plant based. On the contrary, the Δ13Chumans-plants

offset is 4.3‰ which is slightly lower than the offset estimated between plants and their consum-

ers (4.8‰). This scenario contrasts, to some extent, with the one observed at La Barmaz, where

according to FRUITS, the C3 plant contribution was lower than in Vufflens (54.5% vs. 57.6%)

and animal intake higher (26.8‰ vs. 25.6‰). The differences are quite small and given that

these estimates present some uncertainties (S1 Table), it is likely that minor differences in food

Fig 5. The graphs a), c) and e) represent the contributions of foodstuffs as estimated by the Bayesian model FRUITS using δ13C

and δ15N from human and animal bone collagen and C3 and C4 cereal plants (for the values entered refer to S1 Table). The

graphs b), d) and f) illustrate the individual human bone collagen values and the mean isotope values of the main components of

the available foodweb resources. C3 and C4 plant, freshwater fish and herbivore/pig values (with a herbivore diet) represent the

means (±1SD) measured for each Bronze Age phase. Animal forage is evaluated by subtracting the isotopic offsets between plants

and consumer collagen (-4.8‰ and -4‰ for the δ13C and δ15N animal means, respectively); 100% C3 plants, 100% C4 plants,

100% herbivore/pig meat and 100% pike are estimates of the mean isotopic composition of collagen values for consumers that are

one trophic level above the respective resources (+4‰ for δ15N and +0.8‰ for δ13C for collagen and +4‰ for δ15N and +4.8‰

for δ13C for plants consumers). † MBA-FBA cereals. ‡ The animals which showed a herbivore diet are considered together for the

three BA phases due to the limited number of individuals for the MBA (see the main text for further details). § FBA animals with

a herbivore diet.

https://doi.org/10.1371/journal.pone.0245726.g005
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intake are detected with difficulty. Furthermore, there are some resources like pulses whose

contribution is difficult to evaluate. Indeed, pulses values overlap with the C3 plants, making

their consumption even more difficult to estimate because their relative intake cannot be distin-

guished. However, the Vufflens individuals are above the range of 100% C3 plant diet and

within the range of 100% herbivore and pig meat diet (Fig 5D), suggesting a significant role of

animal products in the diet of this community. In this case, an eventual consumption of

legumes could have been masked by a considerable intake of animal protein. Additionally,

given that no significant differences occur between the different Bronze Age animal groups and

very few are present between the C3 cereal plants of the two phases, the individuals of La Barmaz

and Vufflens are directly comparable. Though both the carbon and nitrogen ranges mainly

overlap, significant differences are observable for the δ15N values (Table B in S1 Text, Fig 4),

confirming a difference in terms of animal protein intake between the two communities. As for

the C4 plants, they were not a main component of the diet in the Vufflens humans, nor was

freshwater fish (Fig 5C and 5D). Sulfur data confirm the main C3 terrestrial origin of the

resources consumed. The δ34S mean is 3.1‰ with a limited distribution (Δ34S = 2.4‰) and no

significant correlation is observed between δ15N and δ34S (Rho = -0.08, p = 0.78). Like in the La

Barmaz cemetery, no differences in food habits are recorded that correlate with the anthropo-

logical data and the funerary treatment. Moreover, the statistical analyses do not reveal any dif-

ferences either (Table C in S1 Text).

The Final Bronze Age results from the Tolochenaz humans clearly differ from the two pre-

vious communities, particularly the carbon data. First, the δ13C, δ15N and δ34S values of Tolo-

chenaz are more widespread compared to those of La Barmaz and Vufflens, suggesting a more

varied diet within this group. Then, the Δ13Chumans-animals offset of 3‰ (min = –20.4‰ max =

-17.2‰), highlights a mixed C3-C4 diet, with a remarkable enrichment in 13C for the human

values. This reflects C4 plants like millets intake. As for the nitrogen, a Δ15Nhumans-animals offset

of 2.5‰ indicates a rather limited consumption of animal proteins (Fig 4). This is confirmed

by the FRUITS’ model, where even if the main staple was C3 cereal plants (56.1%), C4 plants

played an important role in the diet (21.6%), in addition to a less important animal product

intake (18.8%). The freshwater fish contribution was minimal (3.3%) (Fig 5E). This scenario is

confirmed in Fig 5F, where the Tolochenaz humans plot below the 100% herbivore and pig

meat range, and are slightly to left of the 100% C3 plant range because of the contribution of

millets. Sulfur results support the main terrestrial origin of the resources consumed, confirmed

by the absence of a significant correlation between δ15N and δ34S (Rho = 0.36, p = 0.33). No

differences are evident when analyzing the results according to the individuals’ associated

grave goods. Nevertheless, only LeB3, differs from the general pattern. His/her δ13C value of

-20.4‰ is typical of a diet based on C3 resources and the δ15N is the highest, 9.7‰, suggesting

a greater animal protein intake than for the rest of the group. Indeed, this result fits perfectly

in the range of the 100% animal diet (Fig 5F). However, his/her δ34S value (2.9‰) is consistent

with the other Tolochenaz results. It is therefore not possible to ascertain whether this individ-

ual came originally from a different place or not. Moreover, since his/her sex and age were not

evaluated because of the bad preservation of the remains and no special grave goods were pres-

ent, it is difficult to formulate a hypothesis to explain the difference in diet. It is possible he/she

came from another community, where different food habits could have been in place. Discus-

sion about mobility is further approached in another paper, where additional strontium and

oxygen isotope data are considered.

Reconstruction of dietary changes during the Bronze Age. This research shows differ-

ences in dietary practices both within and among communities throughout the Bronze Age in

a region that is geographically restricted. Whilst during the first phases of the Bronze Age, bar-

ley, einkorn and wheat are the basis of the diet, during the Final Bronze Age broomcorn and
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foxtail millet are introduced, becoming an important component of the diet, as confirmed in

the following phases at least for some individuals [60, 128]. This could be due to the introduc-

tion of new agricultural practices following new social and economic contacts with southern

Europe societies where these crops were already present [20, 21, 25]. Another factor could be

the intensification of anthropic activities on the environment due to population growth,

among which would be deforestation and diversified land use–forestry, agriculture and pasto-

ralism. These human activities could have strongly impacted soil conditions causing dryness,

responsible for the decrease in soil fertility, which in turn could have favored the farming of

more resistant crops, better adapted to harsh and extreme conditions, like millets. In addition,

the influence of climate fluctuation during the Bronze Age needs to be considered. It could

have contributed to the increase of soil aridity and pushed humans to look for and adopt new

staple crops [129]. The combination of these events was responsible, on the one hand, for the

development of alternative strategies for more efficient and fast agricultural production, and

on the other hand, for the diffusion of new species. Even though in some areas, like in northern

and central Italy, this trend appears earlier, from the Early-Middle Bronze Age transition [20,

21, 24, 25], these results confirm the general European and western Asian trend. Isotopic stud-

ies on humans and animals in France [126, 130], Germany [23, 131, 132], Austria [133], Hun-

gary [134] Slovenia [135], Croatia [136] indicate millet consumption from the Final Bronze

Age onwards. Switzerland, with a similar pattern, could be part of this “Euro-Asian wave” of

new feeding practices, showcasing how this region is part of and well connected to the rest of

Europe. The geomorphology of the area in which the sites are located, a wide Plateau sur-

rounded by the Alps, is not a barrier to the diffusion of new activities and subsistence strate-

gies. On the contrary, the mountains and the Plateau could in fact represent a source of unity

because they are rich in raw materials, indispensable to the populations of the foothills,

encouraging mobility and exchanges at different levels.

The consumption of animal products also changes over time. During the Early and Middle

Bronze Age, meat and derived products seem to be quite significant, whereas during the Final

Bronze Age they are less important. Low animal protein consumption at the end of the Bronze

Age-beginning of the Iron Age is recorded in other European areas [137]. This decrease could

be the result of a defined economic strategy directed to favor crop cultivation as opposed to

animal husbandry, as suggested by the intense use of manure as well as the increase in crop

diversity during the Final Bronze Age. The reason for these choices could be that population

growth is easier to sustain through cultivated foodstuffs instead of animal meat production or

the production of secondary animal products.

The three groups do not show any aquatic resource exploitation, despite being close to riv-

ers and lakes. However, the occasional consumption of fish cannot be excluded. Its intake

could have been so low that it would not be detected through isotope analysis.

Regarding potential differences in dietary patterns linked to individual social status, ethno-

logical research has demonstrated that high social status privileges include differential access

to food, with certain foodstuffs being exclusively set aside for rulers or the ruling lineage [138].

When comparing individuals in Early and Middle Bronze Age cemeteries with different grave

goods, almost no differences in terms of diet and geographic origin appear [20, 22, 126], with

few exceptions [139]. On the contrary, differences are observable from the end of the Bronze

Age [21, 140, 141] and sometimes they seem more linked to the funerary structure than to the

grave goods [136]. During the Iron Age, men buried with weapons often have diets with a

higher animal protein component than other individuals [59, 132, 133, 142]. Among the com-

munities studied here, high social status individuals have not been identified through the

archaeological material except for those from Vufflens, where all the individuals likely belong

to the local elite [31]. However, Vufflens is the only Middle Bronze Age community
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isotopically studied to date in this area. Then, since the Middle Bronze Age data are similar to

that of the Early Bronze Age, dietary trends seem consistent throughout the earlier Bronze Age

periods and no specific foodstuffs appear to have been consumed by high-status individuals.

Juvenile vs. adult dietary patterns. The bone and dentine δ15N and δ13C collagen results

indicate that diet did not differ significantly between childhood and adulthood (Fig 6). This

means that the general food habits were not age dependent, but rather, were characteristic of

each community. In fact, in La Barmaz and Vufflens the data suggest a prevalent C3 diet from

infancy, whereas in Tolochenaz the contribution of millets is highlighted from infancy,

because both dentine and bone show high δ13C values (Fig 6). Furthermore, as already

observed, the La Barmaz and Vufflens bone collagen δ15N and δ13C results have a narrow dis-

tribution, suggesting consistent dietary choices within each group, contrary to Tolochenaz,

whose δ13C and δ15N values show a wider distribution. These trends can also be observed for

collagen dentine results. The Tolochenaz δ13C and δ15N ranges are larger than the La Barmaz

and Vufflens ranges (excluding from the δ15N values of La Barmaz the outlier BA23; S5 Fig).

Consequently, for the Final Bronze Age, as opposed to the previous periods, both children and

adults have access to a wide variety of food resources.

Fig 6. Scatter plot of the δ13C and δ15N values of dentine (triangle) and bone (circle) collagen at the three sites. Data points are labelled with grave numbers.

https://doi.org/10.1371/journal.pone.0245726.g006
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Two general patterns are evident in all sites. First, the dentine values range more widely

than the bone ones. Second, the δ15N values are higher in dentine than in bone, even if only La

Barmaz shows statistical differences (p = 0.024) (Fig 6, Table 7). These two trend are in all like-

lihood linked to a greater consumption of animal protein during childhood. The Δ15Ndentine-

bone individual values of La Barmaz range from -0.2‰ to 1.7‰, which can be explained

through a greater meat and/or dairy food intake in childhood compared to adulthood. How-

ever, as similar trends have already been highlighted in other communities, other factors, espe-

cially physiological ones, may have caused the enrichment in 15N in dentine [143, 144].

Changes in δ15N values can be also related to extended periods of breastfeeding, episodes of

physiological stress and catabolism generated by starvation, long-term disease (infection,

injury) or harsh climatic conditions [145–150]. In catabolic states, the organism uses amino

acids from its own body tissues to synthesize new proteins, leading to an increase of δ15N val-

ues [147, 151–153]. Elevated δ15N levels could also result from a catabolism related to malnu-

trition [152, 154]. Enamel hypoplasia has been identified in several individuals (e.g., BA6,

BA6a/b), but given its complex etiology, it is possible that malnutrition or other physiological

stress resulted in fluctuations in the δ15N collagen values of these individuals.

In terms of the Δ13Cdentine-bone values, statistical differences are present in Vufflens and

Tolochenaz (p = 0.019 and p = 0.046, respectively). The difference between the dentine and

bone means are 0.3‰ in Vufflens and 0.6‰ in Tolochenaz. A value like 0.3‰ could just

reflect the normal fluctuation over a person’s lifetime, whilst 0.6‰ is quite considerable, since

it is almost a step between two consecutive trophic levels. Particularly, LaC3 and LaC7 show

wide offsets of 1.8‰ and 1.9‰, respectively. Even if for both individuals, bone and dentine

values confirm a substantial millet intake, teeth show higher δ13C compared to bone. It seems

that millet was more important in childhood than in adulthood. This result is apparent in

most individuals. While elevated δ15N can represent both nutritional and physiological stress,

a metabolic relationship with δ13C is limited [155]. Thus, variations in δ13C values reflect dif-

ferential contributions of C3 and C4 plants. Isotope values do not seem to highlight any differ-

ences according to biological criteria such as age and sex. These elements appear therefore to

have no impact on dietary choices.

Two individuals from Tolochenaz, LeB3 and LaC1, stand out because their diets differ from

the rest of the community (Fig 6). LeB3 has already been discussed for the diet mainly based

on C3 plants as an adult, but no teeth are available to confirm this trend in childhood as well.

Concerning LaC1, both bone and dentine were analyzed. The bone values indicate bad preser-

vation and were therefore not included in the previous discussion. However, if the results are

correct, he would be the only individual with a drastic dietary change during his life. During

childhood he would have mainly had a C3 diet (δ13C = -20.3‰), while in adulthood he would

have had a mixed C3-C4 diet (δ13C = -17.6‰). He was a mature adult man, with a callus bone

in the right ulna resulting from a fracture [35]. Unfortunately, the discussion for this individ-

ual can go no further for obvious reasons, but some interesting questions arise. If the results

are acceptable, why is he the only one with a dietary shift? Even if a definitive answer is not

possible, this study identifies the presence of individuals with different dietary habits, likely

linked to mobility events. Indeed, this result may support exchanges between different com-

munities with diverse eating traditions. Investigations on strontium and oxygen isotopes pro-

vide further details about this individual’s life [156].

The apatite data. Carbon in apatite is a useful proxy to detect the contribution of low tro-

phic level food, representing a supplementary trophic marker [157–159]. It helps determine

marine vs. terrestrial diets and C3 vs. C4 plant intake [80, 86, 157, 160]. Combining collagen

and apatite data through the apatite carbon isotopic spacing, Δ13Cap-coll, it is possible to assess

whether carbon enriched food sources are protein-depleted or protein-rich. In the case of a
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monoisotopic diet–that is, when δ13C from all macronutrients originates from the same main

food source–a spacing of ca. 8.4‰ (13.4–5‰) can be assumed between carbon in dentine and

in enamel (Δ13Cap-coll) because (a) the δ13Cenamel value in tooth apatite is enriched of ca.

13.4 ± 1.0‰ when compared to the actual diet [82, 84, 85] and (b) a difference of ca. 5‰

between the δ13C of the diet and the collagen can be estimated if the δ13C value of dietary pro-

tein and energy are the same [79]. The Δ13Cap-coll is expected to be higher than 8.4‰ if the diet

is mainly based on C4 carbohydrates and C3 proteins. On the contrary, a lower spacing is

expected if there is an important consumption of C3 carbohydrates and marine protein.

In this study, the Δ13Cap-coll values range from 5.3‰ to 8.0‰. The La Barmaz mean is 6.2‰

± 0.5‰ (min = 5.3‰, max = 7.1‰). The Vufflens mean is 7.3‰ ± 0.4‰ (min = 6.6‰

max = 7.8‰). Finally, the Tolochenaz mean is 7.4‰ ± 0.7‰ (min = 6.9‰ max = 8.0‰).

According to these results, C3 plants and animal proteins were consumed in greater propor-

tion during childhood at the beginning of the Bronze Age, whereas the intake of C4 plants

increased during the later phases of the Bronze Age at the expense of animal protein. This

result is confirmed when combining the Δ13Cap-coll with the δ15N in dentine collagen. Indeed,

the results suggest a diet mainly composed of C3 protein foods and C3 energy food sources in

the Early and Middle Bronze Age. During the Final Bronze Age, the main protein intake came

from a C3 environment but the bulk of the diet included low-protein C4 foodstuffs (Fig 7). Fur-

thermore, no correlations occur between the Δ13Cap-coll spacing and the dentine δ15N values in

La Barmaz and Vufflens. However, in Tolochenaz a negative significant correlation is evident

suggesting the presence of a strong trophic level effect that varies with the individuals (Fig 7).

In order to evaluate the changes in C4 contributions during the Bronze Age, the model elabo-

rated by [161] and [86, 157] was applied (%C4 = (−25 − (δ13Cbone apatite − 9.4)) / 15 × 100). How-

ever, this model was developed from experimental studies on δ13Cbone apatite and δ13Cbone collagen.

Tooth enamel apatite ratios are not equivalent to bone apatite ratios [82, 162], therefore, the

δ13Cenamel values were adjusted. Some studies have estimated the offsets between δ13Cbone apatite

and δ13Cenamel for the same individual in a human population [85, 162–164]. Then, based on

Fig 7. Dentine nitrogen isotope ratios and enamel-dentine collagen spacing for humans from the three sites in

western Switzerland.

https://doi.org/10.1371/journal.pone.0245726.g007
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these results, an average value of + 1.8‰ has been added to δ13Cenamel values [165] before calcu-

lating the proportion of C4 resources consumed. Although the results should be considered with

caution due to analytical uncertainty and to inter-individual variability in the estimated enamel

to bone spacing, they suggest a broad difference in the proportion of C4 plants consumed during

childhood by individuals buried at La Barmaz and Vufflens (respectively an estimate of ca. 20

and 26%) and by individuals buried at Tolochenaz (almost half of the diet derived from C4 plants,

ca. 47%). Thus, δ13Cenamel value confirms first that the dietary patterns detected in adulthood

throughout the Bronze Age are similar to those in childhood and, second, that C4 plants were

directly consumed by humans.

Conclusions

This paper presents for the first time a complex multi-isotopic and bioarchaeological study on

Bronze Age western Switzerland. This area is a natural and economic crossroads between cen-

tral Europe and the Mediterranean area and this study contributes to the reconstruction of

human dietary changes during the Bronze Age and sheds light on the complexity of human

behavior, filling a gap for central Europe.

The botanical data suggest an increased impact of anthropic activities during the Bronze

Age. The manuring practices seemed to play an important role in the farming systems, par-

ticularly at the end of the Bronze Age. There was greater diversity in cereal cultivation,

highlighted by the adoption of new staple crops such as millet varieties. Moreover, plant iso-

topic data indicate that they grew in good hydric conditions, likely directly managed by

humans. As for domestic herbivores, no different herding strategies have been detected

throughout the Bronze Age. The fodder they consumed was based on wild plants and/or

non-fertilized cultivated plants. Based on a reliable isotopic baseline of coeval local food

sources, the human data show that dietary habits changed during the Bronze Age. The sta-

ple crops were wheat, barley and pulses during the first phases of the Bronze Age, whilst

millets, better adapted to poor soil conditions, were adopted at the end of the Bronze Age. It

could be the result of several factors. Among others, exchanges with communities in south-

ern Europe where these crops were already present, like northern Italy, the increasing in

dryness caused by the overexploitation of the soils, without excluding the impact of climatic

fluctuation along the Bronze Age. Furthermore, there is less animal protein intake during

the Final Bronze Age than in previous periods. It is likely that the demographic increase

recorded during this phase led to a change in economic strategies, favoring crop cultivation

instead of animal husbandry. Further investigations on Final Bronze Age communities

could provide more details on this trend.

The comparison between teeth and bone data suggests that, even though a general greater

consumption of animal products in childhood than in adulthood is generally highlighted, the

main patterns identified in adults are confirmed in juveniles. Thus, the general food habits

were not age dependent, but rather, were characteristic of each community. However, some

exceptions are present and these individuals could have had a different origin and therefore

different dietary habits linked to their local origins.

This research highlights the importance studying the entire trophic chain, including archae-

obotanical samples that are still rare in European isotopic research, because this provides cru-

cial details for the reconstruction of the paleoenvironment, agricultural strategies and human

dietary choices. Furthermore, multi-sampling analysis of human remains enabling cross-sec-

tional evaluation facilitates tracking dietary changes throughout an individual’s lifespan. This

study is the first step to understand how protohistoric populations adapted and modified the

landscape where they lived in a limited but well-defined area at the heart of Europe.
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110. Zazzo A. Validation méthodologique de l’utilisation des compositions isotopiques (13C, 18O) des bioa-
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